Baseline Monitoring Report Little Troublesome Stream Restoration Site Project # 749 Rockingham County

Submitted to:

NCDENR-EEP, 1652 Mail Service Center, Raleigh, NC 27699-1652

Construction Completed: December 2009 Data Collection: February 2010 Submitted: May 2010

Landmark Center II, Suite 220 4601 Six Forks Road Raleigh, NC 27609 Phone: (919) 783-9214 Fax: (919) 783-9266

Project Manager: Adam Spiller Email: adam.spiller@kci.com Project No: 12053743G

Table of Contents

1.0	Project Goals, Background and Attributes1
1.1	Location and Setting
1.2	Project Goals and Objectives
1.3	Project Structure, Restoration Type and Approach1
1.4	Project History, Contacts and Attribute Data
2.0	Success Criteria
2.1	Dimension2
2.2	Pattern and Profile
2.3	Substrate
2.4	Sediment Transport
2.5	Vegetation
2.6	Hydrology
3.0	Monitoring Plan
3.1	Dimension
3.2	Profile
3.3	Pattern
3.4	Substrate
3.5	Visual Assessment4
3.6	Vegetation
3.7	Digital Photos4
3.8	Watershed Conditions
4.0	Baseline Conditions
4.0	Juschne Conditions
5.0	Maintenance and Contingency Plans
6.0	References
Anne	andix A Canaral Figuras and Tablas
	endix A – General Figures and Tables
-	1 – Vicinity Map
Figure	2 – Site Map
Table	1 – Project Components

- Table 2 Project Activity and Reporting History
- Table 3 Project Contacts
- Table 4 Project Attributes

Appendix B – Morphological Summary Data and Plots

Table 5 – Baseline Stream Data Summary Table 6 – Morphology and Hydraulic Monitoring Summary Longitudinal Profile Plot Cross-Section Plots Pebble Count Plots

Appendix C – Vegetation Data

Table 7 – Vegetation Plot Data Table 8 – Vegetation Plot Attribute Table Table 9 – Planted Vegetation Vegetation Plot Photos

Appendix D – Stream Photos

Baseline Monitoring Photos

Appendix E – Current Condition Plan View

EXECUTIVE SUMMARY

The Little Troublesome Stream and Wetland Restoration Site, completed in December 2009, restored a total of 2,188 linear feet of stream in the Upper Cape Fear River Basin. In addition, there are approximately 4.5 acres of wetland preservation, 1.9 acres of wetland enhancement, and 2,754 linear feet of stream preservation within the site. The project is located in the USGS Hydrologic Unit 03030002-01-0030 of the Cape Fear River Basin. This HU is within the EEP's Upper Cape Fear Basin Local Watershed Plan and is also listed as a Targeted Local Watershed (TLW) in EEP's *Cape Fear River Basin Priorities Plan 2009*. The project goals and objectives are listed below.

Project Goals

- Restore a stable channel morphology to the project stream that is capable of moving the flows and sediment provided by its watershed.
- Improve water quality for an NCDWQ stream, classified as a Class C and Nutrient Sensitive Waters by reducing bank erosion and bed degradation.
- Enhance aquatic and terrestrial habitat.
- Enhance and preserve existing wetlands and forested buffers.

Project Objectives

- Restore 2,188 linear feet of stable stream channel with the appropriate pattern, profile, and dimension that can support a gravel transport system
- Restore a natural riparian buffer.
- Restore the hyporheic zone in the project streams and re-establish the natural stream features.
- Plug ditches to increase groundwater input to existing wetlands.
- Plant native trees and shrubs throughout the site.

The project site, which is protected by a 30-acre permanent conservation easement held by the State of North Carolina, is situated in Rockingham County in the Northern Inner Piedmont ecoregion of the Piedmont physiographic province. The site is located on two private properties along Little Troublesome Creek (LTC) immediately upstream of Mizpah Church Road, approximately five miles southeast of the Town of Reidsville. The site's 12 square mile watershed is 30% urban and drains half of the Town of Reidsville. Historically, the channel was straightened and at times cattle have had unrestricted access to the channel. Immediately before restoration, cows were fenced out of the stream, but the banks were continuing to erode as the channel was widening. There are also two unnamed tributaries to LTC on the site. Prior to the restoration the first tributary (UT1) was deeply incised with eroding banks. The second tributary (UT2) is a stable intermittent channel and was preserved as a part of this project. Existing wetlands are located to the east and west of LTC. The two areas of wetlands east of LTC each had shallow ditches that reduced the length of the wetland hydroperiod.

Two reference reaches were used in the design process, a section of Collins Creek in Orange County and a section of UT to Wilkinson Creek in Chatham County. Based on the reference and existing site conditions, LTC was restored according to a Priority Level II approach and UT1 utilized a Priority Level III approach. LTC was remeandered and a floodplain was constructed along both sides of the restored channel, creating an E4/C4 channel type. UT1 was remeandered to create a B4c channel type. UT2 was preserved, as were its adjacent wetlands on the west side of the stream. The wetlands on the east side of the stream were enhanced by filling drainage features and by planting additional stems to increase the diversity in the already vegetated wetlands. The site's unvegetated areas were planted with native trees and shrubs consistent with Piedmont Levee Forest and Piedmont Alluvial Forest communities. The site was built as designed with the addition of a riffle grade control before the cross vane at Station 22+00 on

LTC and a log sill and rock stabilization at Station 54+00 on UT1. The site was also planted as designed with a few species substitutions.

The baseline monitoring in February 2010 established the stream and vegetation monitoring components. The stream monitoring consists of a full longitudinal profile of LTC and UT1, and seven cross-sections, three riffles and one pool on LTC and two riffles and one pool on UT1. Eight vegetation monitoring plots were established throughout the planted riparian buffer. These plots will be monitored every year according to the latest CVS-EEP vegetation monitoring protocol. The site will be monitored for at least five years or until the success criteria are met. The first year of monitoring will be in 2010.

1.0 Project Goals, Background and Attributes

1.1 Location and Setting

The project site is located on two parcels, the first owned by Neal Hall with approximately 20 acres on the west side of LTC and the second owned by Jimmie Mitchell with approximately 10.2 acres on the east side of LTC. The project is protected in perpetuity by a conservation easement held by the State of North Carolina. The project site is located along LTC immediately upstream of Mizpah Church Road, and is approximately 5 miles southeast of the Town of Reidsville. See Figure 1 in Appendix A.

The project is located in the USGS Hydrologic Unit 03030002-01-0030 of the Cape Fear River Basin and drains approximately 7,740 acres, including the southern portion of the Town of Reidsville. This HU is within the EEP's Upper Cape Fear Basin Local Watershed Plan and is also listed as a Targeted Local Watershed (TLW) in EEP's *Cape Fear River Basin Priorities Plan 2009*.

1.2 Project Goals and Objectives

Project Goals

- Restore a stable channel morphology to the project stream that is capable of moving the flows and sediment provided by its watershed.
- Improve water quality for an NCDWQ stream, classified as a Class C and Nutrient Sensitive Waters by reducing bank erosion and bed degradation.
- Enhance aquatic and terrestrial habitat.
- Enhance and preserve existing wetlands and forested buffers.

Project Objectives

- Restore 2,188 linear feet of stable stream channel with the appropriate pattern, profile, and dimension that can support a gravel transport system.
- Restore a natural riparian buffer.
- Restore the hyporheic zone in the project streams and re-establish the natural stream features.
- Plug ditches to increase groundwater input to existing wetlands.
- Plant native trees and shrubs throughout the site.

1.3 Project Structure, Restoration Type and Approach

This project restored 1,401 linear feet of LTC and 812 linear feet of UT1, preserved 2,754 linear feet of UT2, enhanced 1.9 acres of wetlands, and preserved 1.5 acres of wetlands. See Figure 2 in Appendix A for an overview of the site layout.

The preservation reach and wetlands are located on the west side of the LTC. In addition to UT2, the preservation wetland has two additional drainage features that contribute to the site hydrology. These two features are not classified as streams and are not eligible for credit.

Two reference reaches were used in the design process, a section of Collins Creek in Orange County and a section of UT to Wilkinson Creek in Chatham County. Based on the reference and existing site conditions, LTC was restored according to a Priority Level II approach and UT1 utilized a Priority Level III approach. LTC was remeandered and a floodplain was constructed along both sides of the restored channel, creating an E4/C4 channel type. UT1 was remeandered to create a B4c channel type. UT2 was preserved along with the wetlands on the west side of the stream. The wetlands on the east side of the stream were enhanced by filling drainage features and planting additional stems to increase the diversity in the already vegetated wetlands. The site's unvegetated areas were planted with native trees and shrubs consistent with Piedmont Levee Forest and Piedmont Alluvial Forest communities. The site was also treated for invasive/exotic vegetation. For a list of planted species see Appendix C.

1.4 Project History, Contacts and Attribute Data

The project was identified for restoration in the EEP's Upper Cape Fear Basin Local Watershed Plan, and the project was initiated by the EEP in the summer of 2006. The restoration plan was completed in June 2007. Construction began in late October 2008. Due to extremely wet site conditions, construction was stopped during the winter of 2008 and completed in December 2009. The site was planted in December 2009.

2.0 Success Criteria

2.1 Dimension

The dimensional data from the yearly cross-section survey should show minimal change over the course of the monitoring period. However, some change is natural and expected, indicating that the site is becoming more stable. Changes that may indicate destabilizing conditions include significant widening or deepening of the riffle section or a consistent trend of change over the course of the monitoring. For a pool cross-section, deepening is frequently a positive change while consistent filling of the pool may indicate destabilization.

2.2 Pattern and Profile

For the profile, the reach under assessment should not demonstrate any trends in thalweg aggradation or degradation over any significant continuous portion of its length. The profile should also demonstrate contrasting bedform diversity against the pre-existing condition. Bedform distributions, riffle/pool lengths and slopes will vary, but should do so around design distributions. The majority of pools should be maintained at greater depths with lower water surface slopes while riffles should be shallow with greater water surface slopes. Pattern features should show little adjustment over the monitoring period.

2.3 Substrate

Substrate measurements, from annual pebble count data, should indicate the progression towards, or the maintenance of, the known distributions from the design phase. While stream projects are designed to transport bedload in equilibrium and carry overall sediment loads at bankfull, fines can be transported even at low discharges and upstream instability beyond design projections can also lead to deposition as storm events recede in areas of energy dissipation such as restoration reaches. This can have the effect of obscuring bedform and fining of riffles especially in the first few years after the implementation of a stream project. In many cases subsequent narrowing and reduction of W/D ratios as a project develops/stabilizes can then increase transport efficiency and return bedform to intended distributions, but some fining can persist due to upstream disturbance.

2.4 Sediment Transport

Maintenance of sediment transport will be evident by the monitored cross-sections and profile. From these two indicators, there should be no evidence of any significant trend in aggradation or degradation throughout the channel.

2.5 Vegetation

Vegetation success is based on the criteria established in the USACE Stream Mitgation Guidelines (2003). This document states that vegetation monitoring results indicate the following planted stem density minimums in the corresponding monitoring years: 320 stems/acre through year three, 288 stems/acre in year four, and 260 stems/acre in year five. If monitoring indicates that the specified survival rate is not being met, appropriate corrective actions will be developed to include invasive species control, the removal of dead/dying plants, and replanting.

2.6 Hydrology

A minimum of two bankfull events, occurring in separate years, must be documented within the monitoring period.

3.0 Monitoring Plan

3.1 Dimension

Seven permanent monitoring cross-sections have been established on the site. Three riffle cross-sections and one pool cross-section have been set up on LTC and two riffle cross-sections and one pool cross-section have been installed on UT1. Permanent monuments of rebar in concrete have been established at each end of these cross-sections. These cross-sections will be surveyed each year, with measurements occurring at bankfull, top of bank, edge of water, and other significant breaks in slope.

3.2 Profile

The entire profile of the restored streams will be surveyed each monitoring year. The profile will be surveyed in detail, documenting the elevations of the thalweg, water surface, and bankfull. Pool and riffle features will be called out to calculate feature slopes and lengths.

3.3 Pattern

Pattern measurements have been taken for the as-built condition and are documented in this report. Future pattern measurements will not be taken unless there is evidence that significant geomorphological adjustments have occurred.

3.4 Substrate

Pebble counts will be conducted at all of the permanent cross-sections. These pebble counts will occur each year of the monitoring period and be used to calculate the sediment distribution at the cross-sections and the D50 and D84 at each location.

3.5 Visual Assessment

A visual assessment of the stream to include an assessment of the bank (lateral stability), bed (vertical stability), the easement boundary, and site vegetation will be completed each year to document the necessary parameters required for the EEP monitoring report.

3.6 Vegetation

Eight vegetation plots were set up and assessed for the baseline vegetation monitoring. Vegetation data collection must follow the CVS-EEP Protocol for Recording Vegetation (Lee et al. 2006, <u>http://cvs.bio.unc.edu/methods.htm</u>). The baseline vegetation monitoring was conducted as a Level 1: Inventory of Planted Stems, as will the first year monitoring. Beginning in year two and continuing throughout the rest of the monitoring period, the site will be monitored using the Level 2 protocol.

3.7 Digital Photos

Seven permanent photo stations have been established as part of the baseline monitoring. Four of these photo stations have two photos assigned to them, so there is a total of 11 photos taken from these photo stations. Starting in the first monitoring year, these photos will be taken in late October / early November, so that vegetative conditions are similar at the site between monitoring years.

3.8 Watershed Conditions

Yearly monitoring will document any evident changes in the watershed. Any large hydrologic events in the watershed, such as tropical storms or hurricanes, will also be documented in the yearly monitoring reports.

4.0 Baseline Conditions

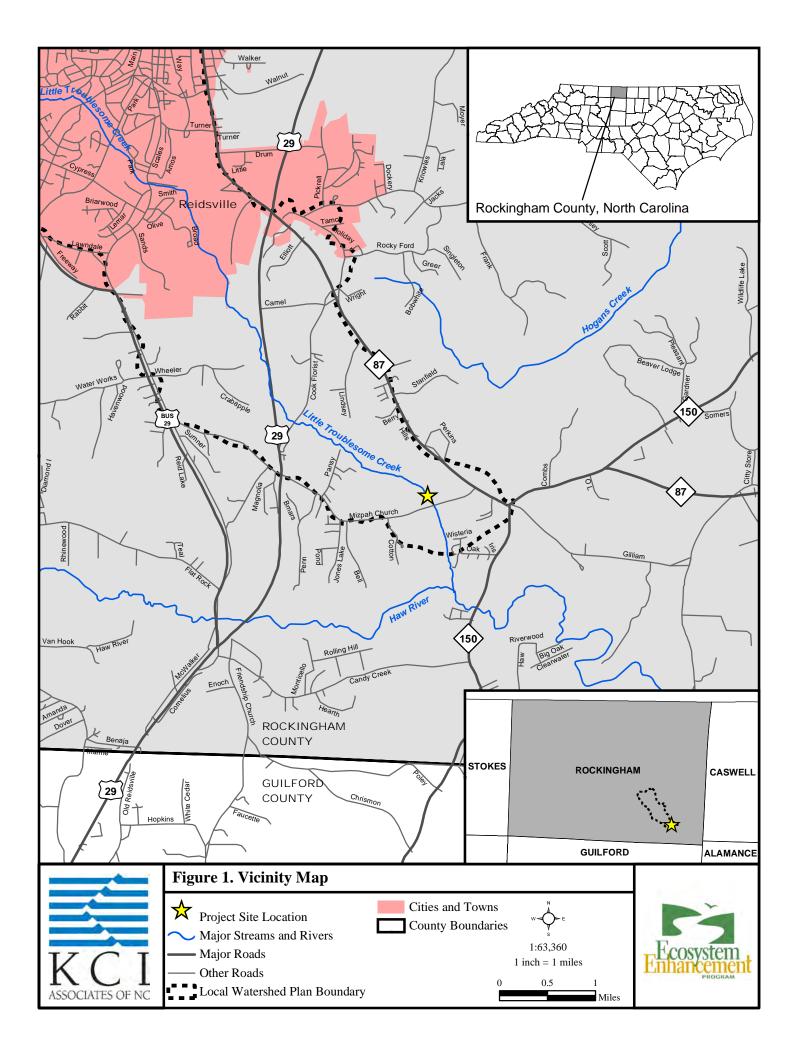
The site was built as designed with the addition of a riffle grade control before the cross vane at Station 22+00 on LTC and a log sill and rock stabilization at Station 54+00 on UT1. The site was also planted as designed with a few species substitutions. Several large rain events flooded the site during the beginning of 2010. These events caused isolated areas of bed degradation on UT1. Future monitoring will determine if these areas will stabilize over time or if they will require repairs.

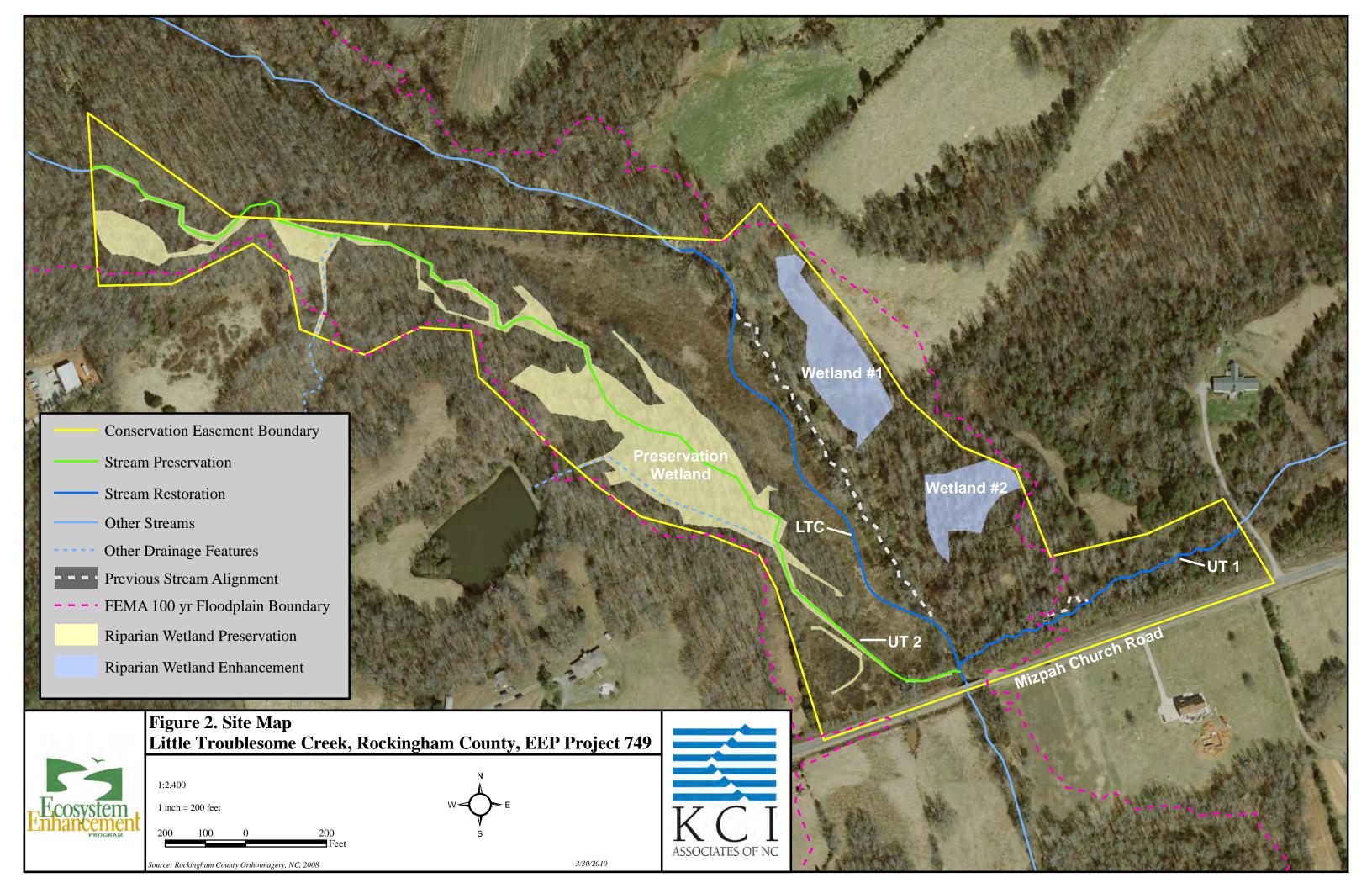
A detailed baseline survey was conducted post-construction by KCI in January 2010. The baseline survey of the longitudinal profile and cross-sections shows that the as-built LTC channel closely reflects the design conditions. The baseline conditions of UT1 reflect some initial erosion immediately following construction. This erosion has caused the cross-sections to be slightly larger than designed and created poor feature definition towards the beginning of the reach.

There were some species from the designed planting plan that were unavailable at the time of planting and approved substitutions were made. These changes included substituting pin oak (*Quercus palustris*) for box elder (*Acer negundo*), chokeberry (*Aronia arbutifolia*) for spicebush (*Lindera benzoin*), and possumhaw (*Viburnum nudum*) for blackhaw (*Viburnum prunifolium*). Other than these changes, the site was planted per the designed planting plan. The eight vegetation monitoring plots established during the baseline conditions survey calculated a site average of 804 planted stems/acre and 759 plantedstems/acre, excluding live stakes. All plots had an average density of at least 486 total planted stems/acre. Due to the baseline vegetation monitoring being conducted during the dormant season, many of the stems were unidentifiable. These stems will be positively identified during the first year of monitoring.

5.0 <u>Maintenance and Contingency Plans</u>

Problem areas at the Little Troublesome Stream Restoration Site will be dealt with accordingly based on the severity of the problem and at the discretion of the EEP. Site maintenance may include reinstallation of coir matting, removal of debris from the channel, stabilization of bank erosion with protective structures, or adjustments to in-stream structures. All maintenance activities will be documented in the yearly monitoring reports.


6.0 <u>References</u>


- EEP. 2004. Troublesome and Little Troublesome Local Watershed Plan. (http://www.nceep.net/services/lwps/Troublesome_Creek/trouble-summ.pdf)
- EEP. 2009. Cape Fear River Basin Restoration Priorities. (http://www.nceep.net/services/lwps/cape_fear/RBRP%20Cape%20Fear%202008.pdf)
- Lee, Michael T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation, Version 4.0 (http://cvs.bio.unc.edu/methods.htm)

USACE. 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.

APPENDIX A

General Figures and Tables

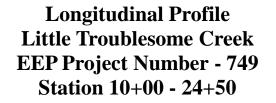
					Project Compo esome / Projec			
Project Component or Reach ID	Existing Feet/Acres	Restoration Level	Approach	Footage or Acreage	Stationing	Buffer Acres	BMP Elements	Comment
	175	R	Р3	175	10+00 - 11+75			In-stream structures, including offset rock cross vanes, riffle grade controls, and rock sills, were used to stabilize restored channel. Planted a riparian buffer.
LTC	975	R	P2	1,020	11+75 - 21+95			In-stream structures, including offset rock cross vanes, riffle grade controls, and rock sills, were used to stabilize restored channel. Planted a riparian buffer.
	179	R	Р3	180	21+95 - 23+75	23.6		In-stream structures, including offset rock cross vanes, riffle grade controls, and rock sills, were used to stabilize restored channel. Planted a riparian buffer.
UTI	873	R	Р3	813	50+00 - 58+13			Stream channel stabilized with in-stream structures, including step pools and riffle grade control. Riffles enhanced with graded gravel material to mimic existing stable riffle features. Planted a riparian buffer.
UT2	2,754	Р		2,754				
Enhancement Wetland #1	1.17 ac	E		1.17 ac		_		Enhanced hydrology and vegetation by plugging ditche to increase groundwater; planted vegetation to increase species diversity. Invasive vegetation was treated.
Enhancement Wetland #2	0.74 ac	Е		0.74 ac				Enhanced hydrology and vegetation by plugging ditche to increase groundwater; planted vegetation to increase species diversity. Invasive vegetation was treated.
Preservation Wetland	4.5 ac	Р		4.5 ac				Preserved a Piedmont Bottomland Hardwood community

	Table 1b. Component Summations											
Destaration	Little Troublesome / Project No. 749 Restoration											
Level	Stream (lf)	Riparian W	Vetland (Ac)	Non-Ripar (Ac)	Upland (Ac)	Buffer (Ac)	BMP					
		Riverine	Non-Riverine									
Restoration	2,188											
Enhancement		1.91										
Enhancement I												
Enhancement II												
Creation												
Preservation	2,754	4.5										
HQ Preservation												
		6.41										
Totals	4,942	6.	.41									

Table 2. Project Activity & Reporting History Little Troublesome / Project No. 749										
Activity or Report	Data Collection Complete	Actual Completion or Delivery								
Environmental Resource Technical Report	Sep 2006	Sep 2006								
Restoration Plan	May 2007	June 2007								
Final Design - Construction Plans		Feb 2007								
Construction		Dec 2009								
Temporary S&E mix applied		Oct 2009								
Permanent seed mix applied		Dec 2009								
Planting		Dec 2009								
Mitigation Plan / As-built (Year 0 Monitoring - Baseline)	Feb 2010	May 2010								
Year 1 Monitoring										
Year 2 Monitoring										
Year 3 Monitoring										
Year 4 Monitoring										
Year 5 Monitoring										

Table 3. Project Contacts									
	oublesome / Project No. 749								
Designer	KCI Associates of North Carolina								
	4601 Six Forks Road, Suite 220								
	Raleigh, NC 27609								
Primary Project Design POC	April Helms (919) 783-9214								
Construction Contractor	Angler Environmental								
	12811 Randolph Ridge Lane								
	Manassas, VA 20109								
Construction Contractor POC	Andrew Griffey (703) 393-4844								
Planting Contractor	HARP, Inc.								
	301 McCullough Drive, 4th Floor								
	Charlotte, NC 28262								
Planting Contractor POC	Alan Peoples (704) 841-2841								
Seeding Contractor	Angler Environmental								
	Manassas, VA 20109								
Seeding Contractor POC	Andrew Griffey (703) 393-4844								
Seed Mix Sources	MD Seed and Environmental Services								
	Gaithersburg, MD 20879								
Monitoring Performers	KCI Associates of North Carolina								
	4601 Six Forks Road, Suite 220								
	Raleigh, NC 27609								
Monitoring POC	Adam Spiller (919) 278-2514								

	ect Attributes	
	e / Project No. 749	~
Project County		am County
Physiographic Region		lmont
Ecoregion		ner Piedmont
River Basin		e Fear
USGS HUC		02010030
NCDWQ Sub-Basin		06-01
Within Extent of EEP Watershed Plan		e Fear Basin LWP
WRC Class		arm
% of Project Easement Demarcated		0%
Beaver Activity Observed During Design Phase	N	lo
Restoration Com	ponent Attributes	
	LTC	UT1
Drainage Area (sq.mi.)	12.09	0.10 sq.mi.
Stream Order	Third	First
Restored Length (feet)	1,375	813
Perennial or Intermittent	Perennial	Perennial
Watershed Type	Rural	Rural
Watershed LULC Distribution	Kurui	Kutui
Forest/Wetland	40	9%
Pasture/Managed Herbaceous		1%
Developed		0%
Watershed Impervious Cover		1%
NCDWQ AU/Index Number		5-7
NCDWQ Classification		NSW
303d Listed	-	les les
Upstream of 303d Listed Segment		les les
Reasons for 303d Listing or Stressor		tic life
Total Acreage of Easement	<u>^</u>	0.3
Total Vegetated Acreage within Easement		0.0
Total Planted Acreage as Part of Restoration		2.2
Rosgen Classification of Pre-Existing	E4	G4c
Rosgen Classification of As-Built	E4/C4	B4c
Valley Type		
Valley Slope	0.002	0.021
Valley Side Slope Range		
Valley Toe Slope Range		
Cowardin Classification		
Trout Waters Designation	Ν	Jo
Species of Concern, Endangered, Etc.	Carolina ladle cravfis	sh (<i>Cambarus davidi</i>)
Dominant Soil Series and Characteristics		()) () () () () () () () () (
Series	Chev	wacla
Depth		еер
Clay%		
K		
Т		


APPENDIX B

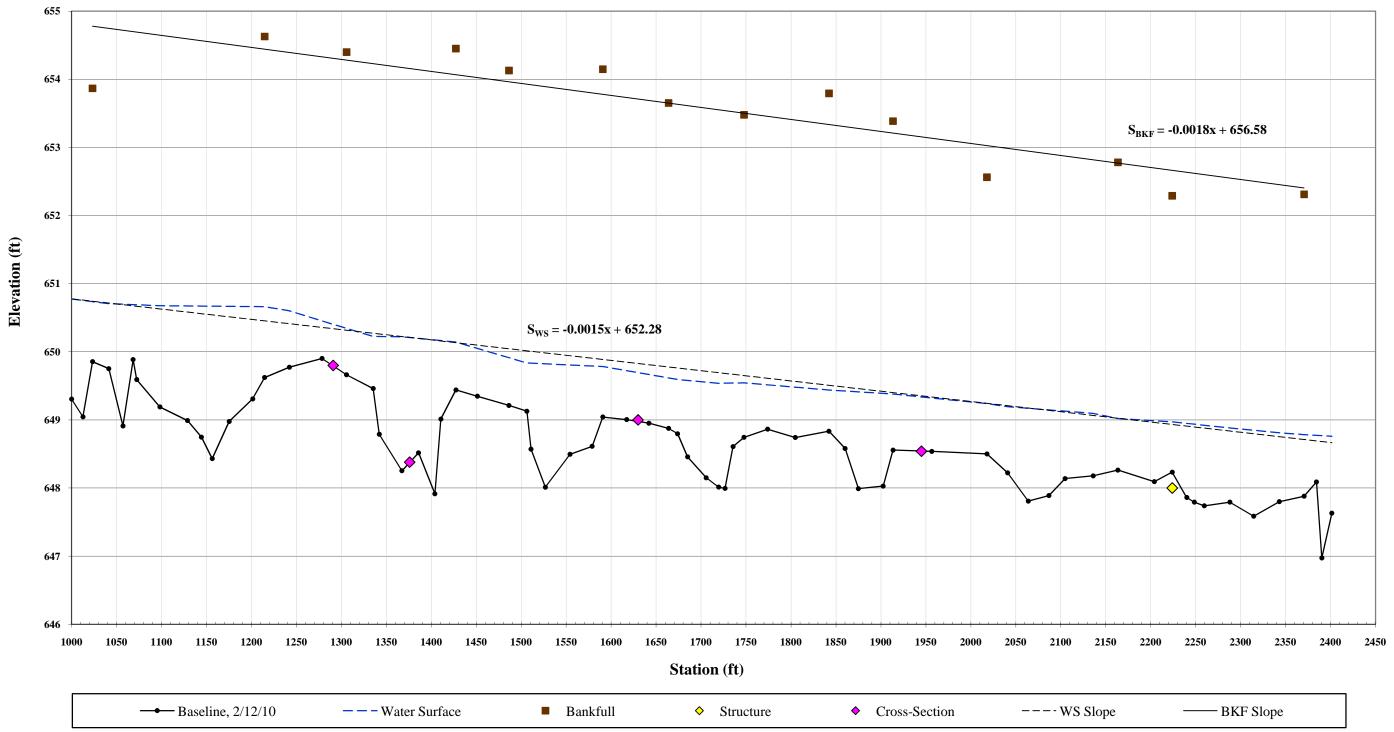
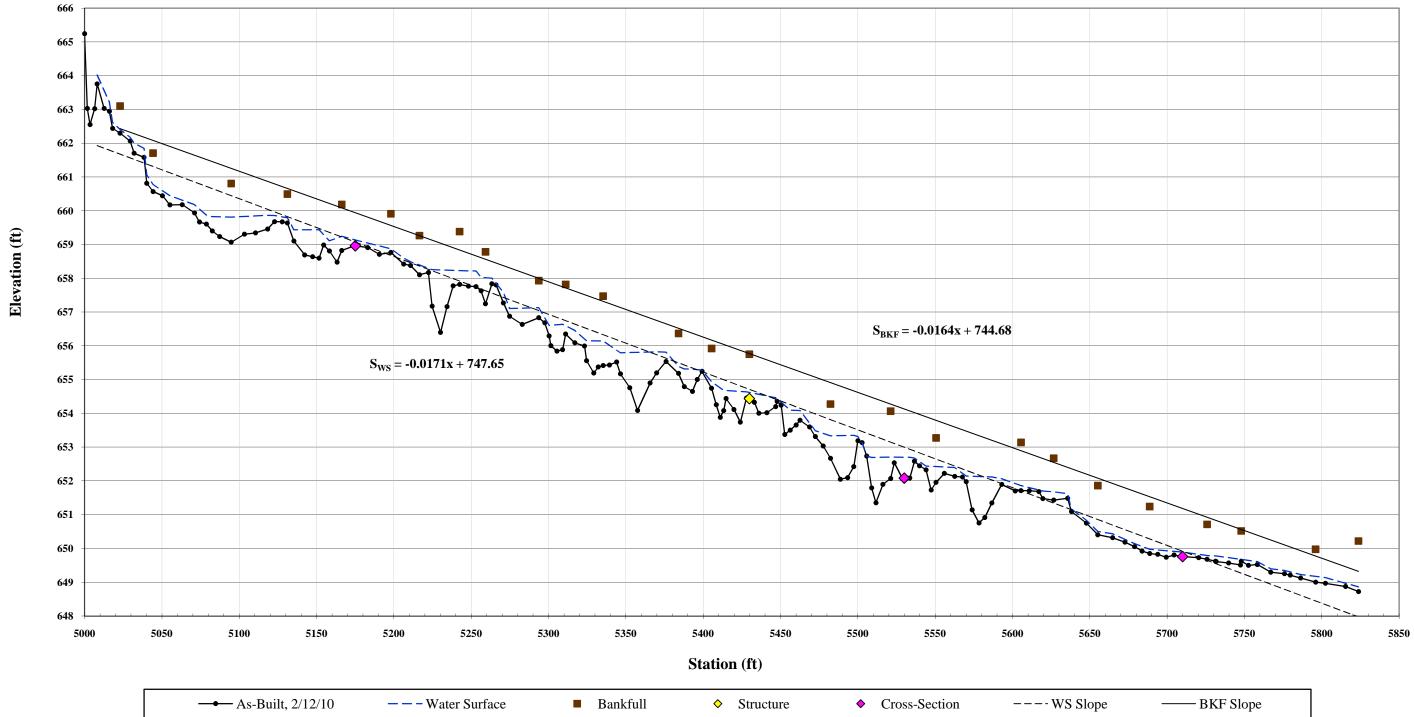

Morphological Summary Data and Plots

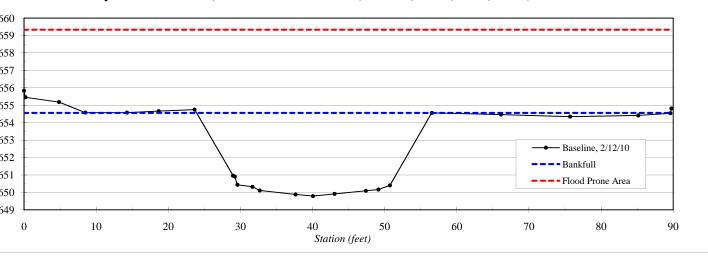
Table 5a. Baseline S									ne St	ream Data S	Summary: 1	LTC												
								le Tro	ubleso	ome / Projec														
Parameter	Reg	ional C	urve		Pre-l	Existing C	ondition				Referen	nce Reach(e	es) Data				Design				As-bu	ilt		
Dimension and Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	n	Min	Med	Max	Min	Mean	Med	Max	SD	n			
Bankfull Width (ft)				21.3	24.2	23.3	29.0	3.4	4	11.9			20.1		2		31.6		32.1	32.7	32.6	33.3	0.6	3
Floodprone Width (ft)					>65				3		>60				2		>60			>200				3
Bankfull Mean Depth (ft)				4.4	4.7	4.8	5.0	0.2	4	1.7			2.7		2		3.7		3.6	3.7	3.7	3.7	0.1	3
Bankfull Max Depth (ft)				6.2	6.6	6.7	6.9	0.3	4	3.3			4.2		2		4.9		4.7	4.8	4.8	4.9	0.1	3
Bankfull Cross-Sectional Area (ft ²)				106.1	114.3	107.6	135.8	14.4	4	32.4			33.4		2		118.0		118.6	118.8	118.6	119.2	0.3	3
Width/Depth Ratio				4.2	5.0	4.7	6.2	1.0	3	4.4			12.1		2		8.5		8.7	9.0	8.9	9.3	0.3	3
Entrenchment Ratio				2.0	2.6	2.7	3.0	0.5	3	2.0			3.0		2		>3.0			>6.0				3
Bank Height Ratio				1.0	1.1	1.1	1.2	0.1	3	1.0			1.1		2		1.0		1.0	1.0	1.0	1.0	0.0	3
d50 (mm)				4.5	6.8	6.8	9.1	3.3	2	1.9			3.4		2				4.1	12.7	14.0	20.0	8.0	3
Profile																								
Riffle Length (ft)																	58		60	90	89	121	21	6
Riffle Slope (ft/ft)										0.0010			0.0070			0.002		0.004	0.0008	0.0022	0.0018	0.0039	0.0013	6
Pool Length (ft)										13			21			20		56	11	60	42	144	42	7
Pool Max Depth										1.5			2.5				7.5		4.9	5.7	5.8	6.2	0.5	7
Pool Spacing (ft)										32			80			50		212	169	199	180	285	44	6
Pool Volume (ft ³)																								
Pattern		<u>.</u>	•		<u>!</u>	<u>!</u>	<u> </u>	4					<u>!</u>				<u>.</u>	<u>.</u>			<u>!</u>	<u></u>		
Channel Beltwidth (ft)										50			60				125		51	63	55	85	15	6
Radius of Curvature (ft)									İ	24			31			72		126	59	87	90	120	24	7
Rc:Bankfull width (ft/ft)										1.2			2.6			2.3		4.0	1.8	2.7	2.8	3.7		
Meander Wavelength (ft)										77			138			158		358	293	328	318	385	35	5
Meander Width Ratio										2.5			5.0				3.9		1.6	1.9	1.7	2.6		
Substrate, bed and transport parameters																								
Ri%/Ru%/P%/G%/S%																								
SC% / Sa% / G% / C% / B% / Be%					3% / 54		% / 0% / 0%				0% / 52%	6 / 48% / 0% /	′ 0% / 0%							1% / 199	% / 75% / (5% / 0% /	0%	
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)						0.56 / 1.4 / 8.						.2 / 1.9 / 16 / 2									/ 10 / 18			
Reach Shear Stress (competency) lb/ft ²																	0.38				0.28			
Max part size (mm) mobilized at bankfull																	28				20			
Stream Power (transport capacity) W/m ²																	-				-			
Additional Reach Parameters																								
Drainage Area (SM)						12.09						1.68					12.09				12.09			
Impervious cover estimate						21%											21%				21%			
Rosgen Classification						E4						E4					E4/C4				E4/C4	ŀ		
Bankfull Velocity (fps)						4.1 - 5.3						3.4 - 4.4					4.3							
Bankfull Discharge (cfs)						553 - 564	1					115 - 150					510 - 550)						
Valley length (ft)		•	•			1,273											1,273				1,273			
Channel thalweg length (ft)						1,329											1,379				1,401			
Sinuosity				1.06													1.10				1.10			
Water Surface Slope (Channel) (ft/ft)				0.0020								0.0030					0.0020				0.001			
BF slope (ft/ft)						0.0020							0.0020		1		0.0018							
Bankfull Floodplain Area (acres)																								
Proportion over wide (%)																								
Entrenchment Class (ER Range)																								
Incision Class (BHR Range)																								
BEHI VL% / L% / M% / H% / VH% / E%																								
Channel Stability or Habitat Metric																								
Biological or Other																								
Diotogical of Other																								


										eline Stream Data Summary: UT1 oublesome / Project No. 749														
D	D	. 10			D			ittle Tr	oubles	ome / Proj		D 1/					D ·				A 1	•1.		
Parameter	Reg	ional C	urve		Pre-	Existing C	ondition				Referen	nce Reach(e	es) Data				Design	1			As-bu	11t		
Dimension and Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	n	Min	Med	Max	Min	Mean	Med	Max	SD	n			
Bankfull Width (ft)				4.0	5.4	5.1	7.7	1.4	5	7.7			10.8				6.3		7.2	7.6		7.9	0.5	2
Floodprone Width (ft)				5	6	6	7	0.9	3	13			16				12		13	13		14	0.6	2
Bankfull Mean Depth (ft)				0.7	0.9	0.9	1.1	0.2	5	0.7			0.9				0.6		0.6	0.6		0.6	0	2
Bankfull Max Depth (ft)				1.0									1.4				1.0		1.1	1.1		1.1	0	2
Bankfull Cross-Sectional Area (ft ²)				3.6	4.6	4.3	5.8	1.0	5	6.1			8.8				3.5		4.5	4.7		4.8	0.2	2
Width/Depth Ratio				4.4	5.7	5.6	7.0	1.3	3	8.5			11.4				11.4		11.5	12.3		13.0	1.1	2
Entrenchment Ratio				1.0	1.3	1.4	1.5	0.3	3	1.6			2.1				1.9		1.6	1.8		1.9	0.2	2
Bank Height Ratio				5.3	6.1	6.4	6.5	0.7	3								1.0		1.0	1.0		1.0	0	2
d50 (mm)				2.2	11.2	12.3	19.2	8.6	3										0.8	1.0		1.1	0.2	2
Profile					-	•	-	-			-		•					1			•	•		
Riffle Length (ft)																			3	11	8	32	9	11
Riffle Slope (ft/ft)										0.0120			0.0280			0.0180		0.0400	0.0077	0.0378	0.0318	0.1022	0.0283	11
Pool Length (ft)										5			9			3		11	5	13	12	36	8	14
Pool Max Depth										0.8			0.9				1.4		1.7	2.3	2.2	3.0	0.5	12
Pool Spacing (ft)																			21	44	41	81	22	13
Pool Volume (ft ²)																								
Pattern			_				-				•	-		_	-						T	I	Ī	
Channel Beltwidth (ft)								_			22						13		6	9	9	14	2.1	19
Radius of Curvature (ft)										11			23			13		32	14	18	18	27	4.5	27
Rc:Bankfull width (ft/ft)										1.0			3.0			2.0		5.0	1.8	2.4	2.4	3.6		
Meander Wavelength (ft)										45			59			32		63	40	51	49	69	7.6	25
Meander Width Ratio										2.0			2.9			2.0		2.9	0.8	1.2	1.2	1.9		
Substrate, bed and transport parameters																								
Ri%/Ru%/P%/G%/S%																								
SC% / Sa% / G% / C% / B% / Be%					0% /	27% / 73% /	/ 0% / 0%				6% / 4	5% / 42% / 79	% / 0%							1% /	63% / 36%	5 / 0% / 09	6	
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)					1.4	4/3.2/7.3/	15 / 20				0.14 /	0.38 / 1.8 / 18	8 / 139							0.22 / 0.	47 / 0.87 /	2.1 / 7.3	/ 23	
Reach Shear Stress (competency) lb/ft ²																	0.42				0.60			
Max part size (mm) mobilized at bankfull																	32				35			
Stream Power (transport capacity) W/m ²																								
Additional Reach Parameters																								
Drainage Area (SM)						0.10						0.15					0.10				0.10			
Impervious cover estimate																								
Rosgen Classification						G4c						B4c					B4c				B4c			
Bankfull Velocity (fps)						4.3 - 4.7						5.1 - 5.8					3.7				3.7			
Bankfull Discharge (cfs)						16 - 20						31 - 49					13 - 20				17			
Valley length (ft)						769											769				769			
Channel thalweg length (ft)						873											813				824			
Sinuosity				1.02							1.20					1.10				1.10				
Water Surface Slope (Channel) (ft/ft)				0.019							0.012					0.018				0.017				
BF slope (ft/ft)				0.021								0.017					0.021				0.016	<u> </u>		
Bankfull Floodplain Area (acres)																								
Proportion over wide (%)																								
Entrenchment Class (ER Range)																								
Incision Class (BHR Range)																								
BEHI VL% / L% / M% / H% / VH% / E%																								
Channel Stability or Habitat Metric																								
Biological or Other																								

				Т	able 6.	Morp	oholog	y and	Hydra	aulic	Moni	torinș	g Sum	nmary	(Dime	ensior	nal Pa	rame	ters - C	ross-	Section	ons)											
										Litt	le Tro	oubles	some /	' Proje	ct No.	749																	
Dimension and Substrate		Cross-S	Section	1 (LTC	, Riffle	e)		Cross	-Sectio	on 2 (LTC, I	Pool)		(Cross-	Sectio	on 3 (L	JTC, I	Riffle)		(Cross-	Sectio	on 4 (L	LTC, I	Riffle)			Cross	s-Secti	on 5 (l	JT1, F	tiffle)
Based on fixed baseline elevation	Base	MY1	MY2 N	IY3 MY	4 MY5	5 MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5 I	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY	1 MY2	MY3	MY4	MY5 MY+
Bankfull Width (ft)	32.6						36.0							32.1							33.3							7.9					
Floodprone Width (ft)	>200						-							>200							>200							13					
Bankfull Mean Depth (ft)	3.7						3.4							3.7							3.6							0.6					
Bankfull Max Depth (ft)	4.8						6.0							4.9							4.7							1.1					
Bankfull Cross-Sectional Area (ft ²)	119.2						123.1							118.6							118.6							4.8					
Bankfull Width/Depth Ratio	8.9						-							8.7							9.3							13					
Bankfull Entrenchment Ratio	>6.0						-							>6.0							>6.0							1.6					
Bankfull Bank Height Ratio	1.0						-							1.0							1.0							1.0					
Cross-Sectional Area Between End Pins (ft ²)	142.4						158.5							156.0							162.2							150.8					
d50 (mm)	20.0						1.8							14.0							4.1							1.1					
		Cross-	Sectior	n 6 (UT1	1, Pool))	(Cross-	Sectio	on 7 (l	UT1, F	Riffle))																				
Based on fixed baseline elevation	Base	MY1	MY2 N	AY3 MY	74 MY5	5 MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+																				
Bankfull Width (ft)	4.6						7.2																										
Floodprone Width (ft)	-						14																										
Bankfull Mean Depth (ft)	0.9						0.6																										
Bankfull Max Depth (ft)	1.4						1.1																										
Bankfull Cross-Sectional Area (ft ²)	4.2						4.5																										
Bankfull Width/Depth Ratio	-						11.5																										
Bankfull Entrenchment Ratio	-						1.9																										
Bankfull Bank Height Ratio	-						1.0																										
Cross-Sectional Area Between End Pins (ft ²)	146.9						120.6																										
d50 (mm)	1.0						0.82																										

Longitudinal Profile UT1 to Little Troublesome Creek EEP Project Number - 749 Station 50+00 - 58+50

Slope	BKF Slope
-------	-----------

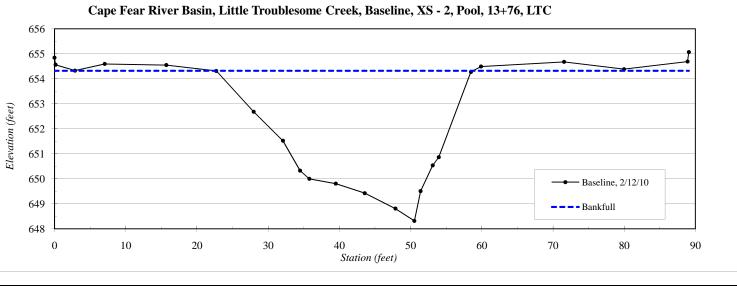

D' D'					Second Street and
River Basin:			Cape Fear		Contraction of the second
Watershed:			Little Troublesome Creek, Baseline		
XS ID	(*)		XS - 1, Riffle, 12+91, LTC		the state of the s
Drainage Ar	ea (sq mi):		12.09		
Date: Field Crew:			2/12/2010 B. Roberts, A. French		
Field Crew:			B. Roberts, A. French		
Station	Elevation		SUMMARY DATA		The second second
0.0	655.83		Bankfull Elevation:	654.6	in the second second
0.0	655.46		Bankfull Cross-Sectional Area:		and the second second
4.9	655.18		Bankfull Width:	32.6	Mar Martin W.
8.5	654.57		Flood Prone Area Elevation:	659.3	and the second second
14.3	654.57		Flood Prone Width:	>200	
14.3	654.66		Max Depth at Bankfull:	4.8	HALL AND THE
23.6	654.75		Mean Depth at Bankfull:	3.7	
29.0	650.96		W / D Ratio:	8.9	and the second
29.0	650.90		Entrenchment Ratio:	>6.0	and a start
29.6	650.44		Bank Height Ratio:	1.0	Carlas V
31.7	650.32		Dank Height Katio.	1.0	
32.7	650.11				Stream Type
37.6					Stream Type
40.1	649.88 649.79				
40.1	649.79				
43.0	650.09		Cape Fear Rive	r Basin, Little Troubles	some Creek, Baselin
47.4	650.09	660			
50.7	650.40				
56.5	654.56	659			
66.1	654.47	658			
75.7	654.35	657	-		
85.2	654.41		-		
89.6	654.54	(ta 656			
89.8	654.81	<i>Elevation</i> (<i>feet</i>) 656 (<i>feet</i>) 653 653		9	
69.8	054.81	.01 654			
		leva 653		\backslash	
			-		
		652		\	/
		651	-	\	/
		650	-	b-a-a-	
			-		
		649	- F		
			0 10 20	30	40 50
					Station (feet)

Station 12+91 Looking Downstream

E4/C4

ne, XS - 1, Riffle, 12+91, LTC

River Basin:	:	C	Cape Fear	
Watershed:		L	ittle Troublesome Creek, Baseline	
XS ID		X	XS - 2, Pool, 13+76, LTC	
Drainage Ar	ea (sq mi):		2.09	
Date:		2	/12/2010	
Field Crew:		В	B. Roberts, A. French	
Station	Elevation		SUMMARY DATA	
0.0	654.84		Bankfull Elevation:	Γ
0.1	654.56		Bankfull Cross-Sectional Area:	Γ
2.9	654.33		Bankfull Width:	Γ
7.0	654.60		Flood Prone Area Elevation:	
15.7	654.55		Flood Prone Width:	Γ
22.7	654.32		Max Depth at Bankfull:	
28.0	652.68		Mean Depth at Bankfull:	Γ
32.1	651.53		W / D Ratio:	Γ
34.5	650.33		Entrenchment Ratio:	Γ
35.8	650.00		Bank Height Ratio:	Γ
39.5	649.81			
43.6	649.43			
47.9	648.81			
50.5	648.32			
51.4	649.51		Cape Fear River Basin, Little Trou	bl
53.1	650.54	656 -		
54.0	650.86	050	-	
58.5	654.28	655		
59.9	654.49			
71.6	654.68	654 -		_
80.0	654.39			
88.9	654.69	(1) 653		
00.1	(55.07	36	L • •	


89.1

655.07

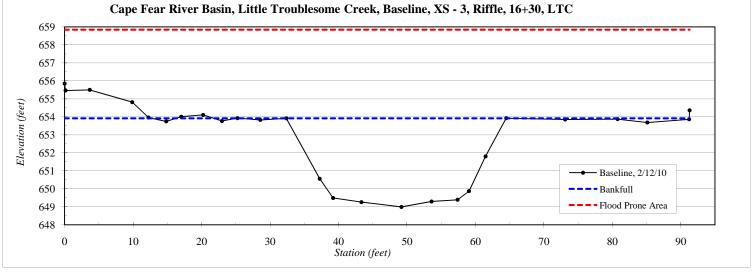
Stream Type

Station 13+76 Looking Downstream

654.3 123.1 36.0 --3.4 6.0 ---

River Basin:		Cape Fear
Watershed:		Little Troublesome Creek, Baseline
XS ID		XS - 3, Riffle, 16+30, LTC
Drainage Ar	ea (sq mi):	12.09
Date:		2/12/2010
Field Crew:		B. Roberts, A. French
Station	Elevation	SUMMARY DATA
0.0	655.85	Bankfull Elevation:
0.1	655.47	Bankfull Cross-Sectional Area:
3.7	655.50	Bankfull Width:
9.9	654.82	Flood Prone Area Elevation:
12.3	653.96	Flood Prone Width:
14.8	653.75	Max Depth at Bankfull:
17.0	654.01	Mean Depth at Bankfull:
	+	

W / D Ratio:


Entrenchment Ratio:

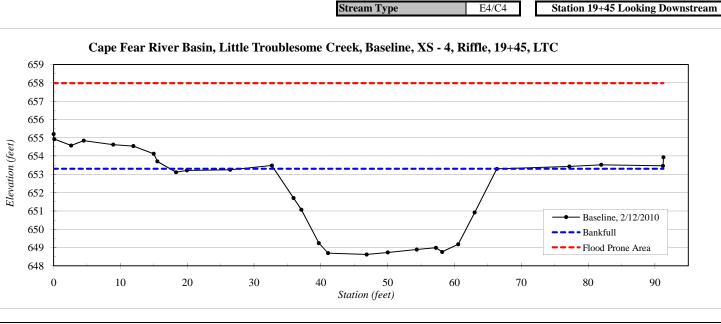
Bank Height Ratio:

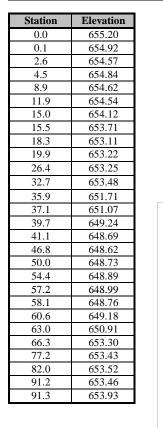
Stream Type

Station 16+30 Looking Downstream

8.7

>6.0


1.0


Station	Elevation
0.0	655.85
0.1	655.47
3.7	655.50
9.9	654.82
12.3	653.96
14.8	653.75
17.0	654.01
20.2	654.11
23.0	653.77
25.2	653.93
28.6	653.83
32.4	653.92
37.3	650.56
39.2	649.49
43.3	649.27
49.2	649.00
53.6	649.30
57.4	649.39
59.1	649.87
61.5	651.81
64.5	653.93
73.1	653.86
80.8	653.88
85.1	653.69
91.2	653.86
91.3	654.36

River Basin:	Cape Fear
Watershed:	Little Troublesome Creek, Baseline
XS ID	XS - 4, Riffle, 19+45, LTC
Drainage Area (sq mi):	12.09
Date:	2/12/2010
Field Crew:	B. Roberts, A. French

SUMMARY DATA	
Bankfull Elevation:	653.3
Bankfull Cross-Sectional Area:	118.6
Bankfull Width:	33.3
Flood Prone Area Elevation:	658.0
Flood Prone Width:	>200
Max Depth at Bankfull:	4.7
Mean Depth at Bankfull:	3.6
W / D Ratio:	9.3
Entrenchment Ratio:	>6.0
Bank Height Ratio:	1.0

River Basin:	Cape Fear
Watershed:	Little Troublesome Creek, Baseline
XS ID	XS - 5, Riffle, 51+75, UT1
Drainage Area (sq mi):	0.10
Date:	2/11/2010
Field Crew:	B. Roberts, A. French

Station

0.0

0.1

3.1

6.6

9.6 14.7

18.3

20.5

22.4

23.2

23.6

24.0

25.2

26.7

27.5

28.9

31.3

33.9

37.6

39.3

43.1

46.5

52.9

53.2

Elevation

666.61

666.33

666.43

666.31 665.02

662.82

661.22

660.38

659.46

659.13

658.96

659.01

659.09

659.56

659.75

659.98

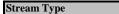
661.18

662.62

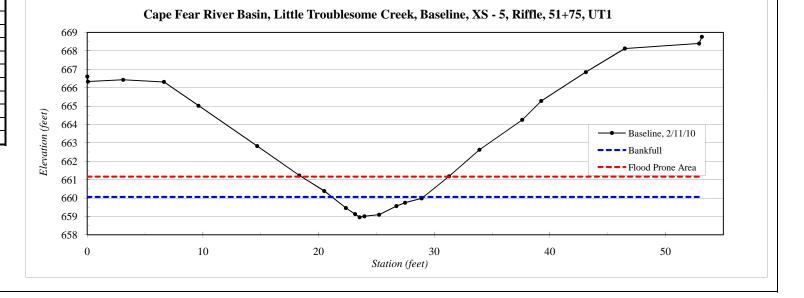
664.24

665.27

666.84

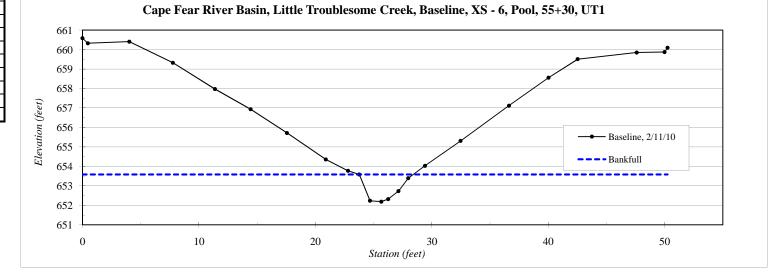

668.12

668.40


668.8

SUMMARY DATA	
Bankfull Elevation:	660.1
Bankfull Cross-Sectional Area:	4.8
Bankfull Width:	7.9
Flood Prone Area Elevation:	661.2
Flood Prone Width:	12.7
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.6
W / D Ratio:	13.0
Entrenchment Ratio:	1.6
Bank Height Ratio:	1.0

Station 51+75 Looking Downstream



		a	
River Basin:		Cape Fear	
Watershed:		Little Troublesome Creek, Baseline	
XS ID		XS - 6, Pool, 55+30, UT1	
Drainage Ar	ea (sq mi):	0.10	
Date:		2/11/2010	
Field Crew:		B. Roberts, A. French	
Station	Elevation	SUMMARY DATA	
0.0	660.58	Bankfull Elevation:	653.6
0.5	660.32	Bankfull Cross-Sectional Area:	4.2
4.0	660.41	Bankfull Width:	4.6
7.8	659.32	Flood Prone Area Elevation:	-
11.4	657.98	Flood Prone Width:	-
14.4	656.94	Max Depth at Bankfull:	1.4
17.6	655.72	Mean Depth at Bankfull:	0.9
20.9	654.35	W / D Ratio:	-
22.8	653.77	Entrenchment Ratio:	-
23.8	653.59	Bank Height Ratio:	-
	1		

Stream Type

Station 55+30 Looking Downstream

0.0	660.58
0.5	660.32
4.0	660.41
7.8	659.32
11.4	657.98
14.4	656.94
17.6	655.72
20.9	654.35
22.8	653.77
23.8	653.59
24.7	652.24
25.7	652.19
26.3	652.32
27.1	652.74
28.0	653.39
29.4	654.03
32.5	655.31
36.6	657.12
40.0	658.55
42.5	659.51
47.6	659.85
50.0	659.87
50.3	660.09

River Basin:		Cape Fear	1		A CONTRACTOR OF THE OWNER		
Watershed:		Little Troublesome Cr	eek Baseline				
XS ID		XS - 7, Riffle, 57+10,			A Marile Marile La Party		
Drainage Ar	en (ca mi).	0.10	011			- CARLEN AND AND AND AND AND AND AND AND AND AN	
Date:	ea (sq m):	2/11/2010				the second second	A REAL PROPERTY OF A REAL PROPER
Field Crew:		B. Roberts, A. French				1. 2. 6	
Ficia Crew.		B. Roberts, A. Freien			the second second		A CARLEN CONTRACTOR
Station	Elevation	SUMMARY DAT	ГА				
0.0	657.58	Bankfull Elevation		650.9	The second second		
0.2	657.21	Bankfull Cross-S		4.5			And the second second second
3.4	657.13	Bankfull Width:		7.2		and the second second	The second of
4.9	657.14	Flood Prone Are	a Elevation:	652.0	and the second second	DAR + + ;	
6.2	656.86	Flood Prone Wid		13.6			
7.8	656.55	Max Depth at Ba		1.1		and services for	A AND THE A PARTY
9.6	656.43	Mean Depth at B		0.6	ALCONT IN THE	a se / ma	
12.8	654.99	W / D Ratio:		11.5	and the second s		
16.3	653.52	Entrenchment R	atio:	1.9			
19.4	652.20	Bank Height Rat	io:	1.0		1 Partie	
21.9	651.24						
23.7	650.59				Stream Type	B4c	Station 57+10 Looking Downstream
24.9	650.24				JI		
25.9	649.91						
26.3	649.80						40 1/24
26.6	649.79	Ca	pe Fear River Basin	, Little Troubles	ome Creek, Baseline,	XS - 7, Riffle, 57+	10, UT1
27.1	649.83	658					
27.7	649.98						
29.0	650.50	657					
30.0	650.89	656					
32.2	651.54	-				r	
33.4	651.92	÷ 655					
35.3	652.73	<u>م</u> في 654					
38.4	654.01	и		x.			
41.6	655.28	·ਬ 653		\rightarrow			– – – • Bankfull
43.4	655.75	lev.				/	Flood Prone Area
46.8	655.85	ā 652			· · · · · · · · · · · · · · · · · · ·		
51.5	655.85	651		<u> </u>			
51.7	656.24	-					
8	·	650					
		649					· · · · · ·
			10	20	20	40	50
		0	10	20	30 Station (feet)	40	50
					Station (jeet)		

Cross-Section 1 Riffle - LTC Baseline											
Particle	Millimeter	Material	Count	Item %	Cum %			Cumulative Percent			
Silt/Clay	< 0.062	S/C	2	2%	2%		100%	*****			
Very Fine	.062125	S		0%	2%		90%				
Fine	.12525	А	2	2%	4%		80%	<u> </u>			
Medium	.2550	Ν	7	7%	11%	'nt	70%				
Coarse	.50 - 1	D		0%	11%	erce	60%				
Very Coarse	1 - 2	S	1	1%	12%	Cumulative Percent	50% 40%				
Very Fine	2 - 4			0%	12%	ılati	40% 30%				
Fine	4 - 5.7	G		0%	12%	Im	20%	<u> </u>			
Fine	5.7 - 8	R	5	5%	17%	U	10%	¢			
Medium	8 - 11.3	А	9	9%	26%		0%				
Medium	11.3 - 16	V	17	17%	43%			0.01 0.1 1 10 100 1000 10000			
Coarse	16 - 22.6	Е	12	12%	54%			Particle Size - Millimeters			
Coarse	22.6 - 32	L	10	10%	64%			Baseline			
Very Coarse	32 - 45	S	19	19%	83%						
Very Coarse	45 - 64		9	9%	92%						
Small	64 - 90	С	4	4%	96%			Individual Class Percentage			
Small	90 - 128	0	2	2%	98%		100%				
Large	128 - 180	В	1	1%	99%	nt	90%				
Large	180 - 256	L	1	1%	100%	srce	80% 70%				
Small	256 - 362	В		0%	100%	Individual Class Percent	70% 60%				
Small	362 - 512	L		0%	100%	Clas	50%				
Medium	512 - 1024	D		0%	100%	ual (40%				
Lrg- Very Lrg	1024 - 2048	R		0%	100%	ividu	30%				
Bedrock	>2048	BDRK		0%	100%	Indi	20%				
		Total	101	100%	100%		10% 0%				
Summar	y Data							000,120,20, 1 1 1 0 1 10 2 2 10 00 00 10 10 20 30 30 30 00			
D50	20							Particel Size - Millimeters			
D84	47							Baseline			
D95	82							- Dasenie			

	Cross-Section	on 2 Pool	- LTC Base	line				
Particle	Millimeter	Material	Count	Item %	Cum %			Cumulative Percent
Silt/Clay	< 0.062	S/C	9	9%	9%		100%	
Very Fine	.062125	S	9	9%	18%		90%	
Fine	.12525	А		0%	18%		80%	
Medium	.2550	Ν	4	4%	22%	ent	70%	
Coarse	.50 - 1	D	6	6%	28%	Perc	609 509	
Very Coarse	1 - 2	S	25	25%	53%	Cumulative Percent	40%	
Very Fine	2 - 4		7	7%	60%	ulat	30%	
Fine	4 - 5.7	G	8	8%	68%	um (20%	
Fine	5.7 - 8	R	7	7%	75%		10%	
Medium	8 - 11.3	А	11	11%	86%		0%	
Medium	11.3 - 16	V	9	9%	95%			0.01 0.1 1 10 100 1000 10000
Coarse	16 - 22.6	E	4	4%	99%			Particle Size - Millimeters
Coarse	22.6 - 32	L	1	1%	100%			Baseline
Very Coarse	32 - 45	S		0%	100%			
Very Coarse	45 - 64			0%	100%			Individual Class Percentage
Small	64 - 90	C		0%	100%		1000	C
Small	90 - 128 128 - 180	O B		0% 0%	100%		1009 909	
Large Large	128 - 180 180 - 256	ь L		0%	100%	cent	809	
Small	256 - 362	B		0%	100%	Per	709	
Small	230 - 302 362 - 512	ь L		0%	100%	lass	60%	
Medium	512 - 1024	D		0%	100%	alC	50% 40%	
Lrg- Very Lrg				0%	100%	Individual Class Percent	30%	
Bedrock	>2048	BDRK		0%	100%	ndiv	20%	
		Total	100	100%	100%		109	
Summar	y Data						07	
D50	1.8							いっていたったった 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、
D84	10							
D95	16							

	Cross-Sectio	on 3 Riffle	- LTC Base	eline					
Particle	Millimeter	Material	Count	Item %	Cum %				Cumulative Percent
Silt/Clay	< 0.062	S/C	1	1%	1%		100	%	
Very Fine	.062125	S		0%	1%		90	%	
Fine	.12525	А	2	2%	3%		80		
Medium	.2550	Ν	6	6%	9%	ent	70		/
Coarse	.50 - 1	D	2	2%	11%	erc	60 50		للمسو
Very Coarse	1 - 2	S	1	1%	12%	Cumulative Percent	40		
Very Fine	2 - 4		3	3%	15%	ulati	30		
Fine	4 - 5.7	G	6	6%	21%	Ţ	20		
Fine	5.7 - 8	R	7	7%	28%	0	10	% —	A MARKAN A
Medium	8 - 11.3	А	13	13%	41%		0	% └─	
Medium	11.3 - 16	V	13	13%	54%			0.01	0.1 1 10 100 1000 10000
Coarse	16 - 22.6	Е	4	4%	58%				Particle Size - Millimeters
Coarse	22.6 - 32	L	10	10%	68%				Baseline
Very Coarse	32 - 45	S	8	8%	76%				
Very Coarse	45 - 64		14	14%	90%				Individual Class Demonstrate
Small	64 - 90	C	6	6%	96%				Individual Class Percentage
Small	90 - 128	0	2	2%	98%		100 90		
Large	128 - 180	B	2	2% 0%	100% 100%	ent	90 80		
Large	180 - 256	L				Perc	70		
Small	256 - 362 362 - 512	B		0% 0%	100%	ass	60		
Small Medium	362 - 512 512 - 1024	L D		0%	100% 100%	ll Cl	50 40		
Lrg- Very Lrg		_		0%	100%	idua	40 30		
Bedrock	>2048	BDRK		0%	100%	Individual Class Percent	20		
Deutoek	2070	Total	100	100%	100%	Ir	10		
Summar	v Data	20002	100	100/0	100,0		0	% +-	
D50	14							0.962	120202 12 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
D84	55								Particel Size - Millimeters
D95	85								Baseline

Cross-Section 4 Riffle - LTC Baseline								
Particle	Millimeter	Material	Count	Item %	Cum %			Cumulative Percent
Silt/Clay	< 0.062	S/C		0%	0%		100% -	
Very Fine	.062125	S	3	3%	3%		90% -	
Fine	.12525	А	7	7%	10%		80% -	
Medium	.2550	Ν	15	15%	25%	ent	70% -	/
Coarse	.50 - 1	D	3	3%	28%	erc	60% ·	
Very Coarse	1 - 2	S	7	7%	35%	Cumulative Percent	50% - 40% -	
Very Fine	2 - 4		14	14%	49%	ulati		
Fine	4 - 5.7	G	22	22%	70%	Ţ	20%	
Fine	5.7 - 8	R	9	9%	79%	0	10% -	
Medium	8 - 11.3	А	11	11%	90%		0%	
Medium	11.3 - 16	V	2	2%	92%		0.	01 0.1 1 10 100 1000 10000
Coarse	16 - 22.6	Е	2	2%	94%			Particle Size - Millimeters
Coarse	22.6 - 32	L	2	2%	96%			Baseline
Very Coarse	32 - 45	S	3	3%	99%			
Very Coarse	45 - 64		1	1%	100%			
Small	64 - 90	С		0%	100%			Individual Class Percentage
Small	90 - 128	0		0%	100%		100%	
Large	128 - 180	В		0%	100%	nt	90%	
Large	180 - 256	L		0%	100%	erce	80% 70%	
Small	256 - 362	В		0%	100%	Individual Class Percent	60%	
Small	362 - 512	L		0%	100%	Clas	50%	
Medium	512 - 1024	D		0%	100%	ual	40%	
Lrg- Very Lrg	1024 - 2048	R		0%	100%	ivid	30%	
Bedrock	>2048	BDRK		0%	100%	Ind	20% 10%	
		Total	101	100%	100%		0%	
Summary Data								ちょううっ、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
D50	4.1						0	Particel Size - Millimeters
D84	9.2							Baseline
D95	26							

	Cross-Sectio	on 5 Riffle	- UT1 Base	line			
Particle	Millimeter	Material	Count	Item %	Cum %		Cumulative Percent
Silt/Clay	< 0.062	S/C	2	2%	2%		
Very Fine	.062125	S		0%	2%		90%
Fine	.12525	А	23	23%	25%		80%
Medium	.2550	Ν	15	15%	40%	ent	
Coarse	.50 - 1	D	9	9%	49%	Perc	50%
Very Coarse	1 - 2	S	5	5%	55%	Cumulative Percent	
Very Fine	2 - 4		3	3%	58%	ulat	30%
Fine	4 - 5.7	G	7	7%	65%	Jum	20%
Fine	5.7 - 8	R	7	7%	72%		
Medium	8 - 11.3	А	5	5%	77%		
Medium	11.3 - 16	V	3	3%	80%		0.01 0.1 1 10 100 1000 10000
Coarse	16 - 22.6	Е	9	9%	89%		Particle Size - Millimeters
Coarse	22.6 - 32	L	7	7%	96%		Baseline
Very Coarse	32 - 45	S	2	2%	98%		
Very Coarse	45 - 64		2	2%	100%		
Small	64 - 90	С		0%	100%		Individual Class Percentage
Small	90 - 128	0		0%	100%		100%
Large	128 - 180	В		0%	100%	nt	90%
Large	180 - 256	L		0%	100%	Individual Class Percent	80% 70%
Small	256 - 362	В		0%	100%	ss Pe	
Small	362 - 512	L		0%	100%	Clas	50%
Medium	512 - 1024	D		0%	100%	ıal (40%
Lrg- Very Lrg	1024 - 2048	R		0%	100%	vidı	30%
Bedrock	>2048	BDRK		0%	100%	Indi	
		Total	99	100%	100%		
Summary Data							000 12 02 02 1 5 1 0 0 0 1 10 2 2 12 00 00 12 10 20 20 20 20 0 0 0
D50	1.1						Particel Size - Millimeters
D84	19						
D95	30						

Cross-Section 6 Pool - UT1 Baseline								
Particle	Millimeter	Material	Count	Item %	Cum %			Cumulative Percent
Silt/Clay	< 0.062	S/C		0%	0%		100% T	· · · · · · · · · · · · · · · · · · ·
Very Fine	.062125	S	6	6%	6%		90% -	x x
Fine	.12525	А	11	11%	17%		80% +	
Medium	.2550	Ν	10	10%	27%	ent	70%	
Coarse	.50 - 1	D	24	24%	50%	Perc	60% - 50% -	and a start of the
Very Coarse	1 - 2	S	3	3%	53%	Cumulative Percent	40%	
Very Fine	2 - 4		2	2%	55%	ulat	30% -	
Fine	4 - 5.7	G	3	3%	58%	, mn	20% -	
Fine	5.7 - 8	R	1	1%	59%		10% -	
Medium	8 - 11.3	А	7	7%	66%		0% +	
Medium	11.3 - 16	V	9	9%	75%		0.0	
Coarse	16 - 22.6	E	6	6%	81%			Particle Size - Millimeters
Coarse	22.6 - 32	L	8	8%	89%			Baseline
Very Coarse	32 - 45	S	3	3%	92%			
Very Coarse	45 - 64	~	5	5%	97%			Individual Class Percentage
Small	64 - 90	C	3	3%	100%			Individual Class I elcentage
Small	90 - 128 128 - 180	O B		0%	100%		$\frac{100\%}{90\%}$	
Large	128 - 180 180 - 256	в L		0% 0%	100%	cent	80%	
Large	256 - 362				100%	Pero	70% -	
Small Small	256 - 362 362 - 512	B L		0% 0%	100%	ass	60% -	
Medium	512 - 1024	L D		0%	100%	n Cl	50% - 40% -	
Lrg- Very Lrg				0%	100%	iduŝ	30%	
Bedrock	>2048	BDRK		0%	100%	Individual Class Percent	20% -	
		Total	101	100%	100%	I	10%	
Summar	y Data							
D50	0.99						0,0	っ、いっ、い、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
D84	25							
D95	55							Baseline

Cross-Section 7 Riffle - UT1 Baseline								
Particle	Millimeter	Material	Count	Item %	Cum %			Cumulative Percent
Silt/Clay	< 0.062	S/C		0%	0%		100%	· · · · · · · · · · · · · · · · · · ·
Very Fine	.062125	S	2	2%	2%		90%	
Fine	.12525	А	12	11%	13%		80%	
Medium	.2550	Ν	23	21%	33%	ent	70%	
Coarse	.50 - 1	D	26	23%	57%	Perc	60% 50%	
Very Coarse	1 - 2	S	18	16%	73%	Cumulative Percent	40%	
Very Fine	2 - 4		14	13%	86%	ulat	30%	· · · · · · · · · · · · · · · · · · ·
Fine	4 - 5.7	G	10	9%	95%	Cum	20%	
Fine	5.7 - 8	R	4	4%	98%	Ŭ	10%	
Medium	8 - 11.3	А	1	1%	99%		0%	
Medium	11.3 - 16	V	1	1%	100%		0	.01 0.1 1 10 100 1000 10000
Coarse	16 - 22.6	Е		0%	100%			Particle Size - Millimeters
Coarse	22.6 - 32	L		0%	100%			Baseline
Very Coarse	32 - 45	S		0%	100%			
Very Coarse	45 - 64			0%	100%			
Small	64 - 90	С		0%	100%			Individual Class Percentage
Small	90 - 128	0		0%	100%		100%	
Large	128 - 180	В		0%	100%	ent	90% 80%	
Large	180 - 256	L		0%	100%	Individual Class Percent	80% 70%	
Small	256 - 362	В		0%	100%	ss P	60%	
Small	362 - 512	L		0%	100%	Cla	50%	
Medium	512 - 1024	D		0%	100%	lual	40%	
Lrg- Very Lrg				0%	100%	livid	30% 20%	
Bedrock	>2048	BDRK		0%	100%	Inc	10%	
		Total	111	100%	100%		0%	<u>↓</u> , ₽
Summar								6, 12, 02, 1, 1, 1, 0, 2, 1, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2
D50	0.82						(Particel Size - Millimeters
D84	3.7							■ Baseline
D95	6.2							

APPENDIX C

Vegetation Data

									Τa	ble 7.	Vegeta	ation P	Plot Da	ta																
									Little	Troub	lesom	e / Pro	ject N	b. 749																
												0	Current	Plot D	ata (M	Y0 201	0)										An	nual M	eans	
			74	9-A-00	01	74	9-A-00	02	74	9-A-00	03	74	49-A-00	04	74	19-A-00	05	74	9-A-00	06	74	19-A-00	007	74	9-A-00	08	MY0 (2010)			
Scientific Name	Common Name	Species Type	P-LS	P-all	Т	P-LS	P-all	Т	P-LS	P-all	Т	P-LS	P-all	Т	P-LS	P-all	Т	P-LS	P-all	Т	P-LS	P-all	Т	P-LS	P-all	Т	P-LS	P-all	Т	
Betula nigra	river birch	Tree		4	4		3	3								8	8		5	5		5	5		10	10		35	35	
Cornus amomum	silky dogwood	Shrub								1	1	2	2	2													2	3	3	
Platanus occidentalis	American sycamore	Tree		1	1		2	2		6	6		3	3		2	2		5	5		9	9		1	1		29	29	
Quercus spp.	oak	Shrub Tree		2	2		4	4		2	2		3	3		2	2		3	3		5	5		1	1		22	22	
Quercus phellos	willow oak	Tree					2	2											1	1		1	1					4	4	
Salix spp.	willow	Shrub Tree										6	6	6													6	6	6	
Sambucus canadensis	common elderberry	Shrub Tree										1	1	1													1	1	1	
Unknown		unknown		5	5		6	6		9	9		11	11		8	8		3	3		6	6		11	11		59	59	
		Stem count	0	12	12	0	17	17	0	18	18	9	26	26	0	20	20	0	17	17	0	26	26	0	23	23	9	159	159	
size (ares				1			1			1			1			1			1			1			1			8		
size (ACRES)				0.02		0.02			0.02				0.02		0.02				0.02		0.02			0.02			0.20			
Species count			0	4	4	0	5	5	0	4	4	3	6	6	0	4	4	0	5	5	0	5	5	0	4	4	3	8	8	
	Stems per ACRE			485.6	485.6	0	688	688	0	728.4	728.4	364.2	1052	1052	0	809.4	809.4	0	688	688	0	1052	1052	0	930.8	930.8	45.53	804.3	804.3	

P-LS = Planted Live Stakes

T = Total stems, including planted and volunteer stems

P-all = Planted Stems, including live stakes

	Table 8. Vegetation Plot Attribute Table												
	Little Troublesome / Project No. 749												
Plot ID	Community Type	Planting Zone ID	Reach ID	CVS Level									
749-A-0001	Piedmont Alluvial Forest	Bare Root	LTC	1									
749-A-0002	Piedmont Alluvial Forest	Bare Root	LTC	1									
749-A-0003	Piedmont Alluvial Forest	Bare Root	LTC	1									
749-A-0004	Piedmont Alluvial Forest	Bare Root/Live Stake	LTC	1									
749-A-0005	Piedmont Alluvial Forest	Bare Root	LTC	1									
749-A-0006	Piedmont Alluvial Forest	Bare Root	UT1	1									
749-A-0007	Piedmont Alluvial Forest	Bare Root	UT1	1									
749-A-0008	Piedmont Alluvial Forest	Bare Root	UT1	1									

Table 9. Planted Vegetation										
	Little Troublesome / Proj	ect No. 749								
Planting Zone	Species	Common Name	Size	Quantity						
Woody Trees and Shrubs										
Alluvial Forest (Wetland/Terrace)	Aronia arbutifolia	Red-chokeberry	bare root	200						
Alluvial Forest (Wetland/Terrace)	Celtis laevigata	Sugarberry	bare root	900						
Alluvial Forest (Wetland/Terrace)	Diospyros virginiana	Persimmon	bare root	200						
Alluvial Forest (Wetland/Terrace)	Viburnum nudum	Possumhaw	bare root	200						
Alluvial Forest (Wetland/Terrace) & Floodplain (Bankfull Bench)	Betula nigra	River Birch	bare root	1,000						
Alluvial Forest (Wetland/Terrace) & Floodplain (Bankfull Bench)	Platanus occidentalis	American Sycamore	bare root	1,000						
Alluvial Forest (Wetland/Terrace) & Floodplain (Bankfull Bench)	Quercus michauxii	Swamp Chestnut Oak	bare root	1,000						
Alluvial Forest (Wetland/Terrace) & Floodplain (Bankfull Bench)	Quercus phellos	Willow Oak	bare root	500						
Floodplain (Bankfull Bench)	Quercus palustris	Pin Oak	bare root	200						
Stream Zone (Stream Banks)	Cornus amomum	Silky Dogwood	bare root	645						
Stream Zone (Stream Banks)	Salix nigra	Black Willow	bare root	645						
Stream Zone (Stream Banks)	Salix sericea	Silky Willow	bare root	645						
Stream Zone (Stream Banks)	Sambucus canadensis	Elderberry	bare root	645						
Permanent Seed Mix										
All Disturbed Areas	Dactylis glomerata	Orchard Grass	seed	1.5 lbs./acre						
All Disturbed Areas	Andropogon glomeratus	Bluestem	seed	3.0 lbs./acre						
All Disturbed Areas	Elymus virginicus	Virginia Wildrye	seed	3.0 lbs./acre						
All Disturbed Areas	Chasmanthium latifolium	River Oats	seed	1.5 lbs./acre						
All Disturbed Areas	Dichanthelium clandestinum	Deer-Tongue	seed	6.0 lbs./acre						
All Disturbed Areas	Panicum virgatum	Switchgrass	seed	4.5 lbs./acre						
All Disturbed Areas	Carex vulipinoidea	Fox Sedge	seed	3.0 lbs./acre						

Vegetation Plot 1: 2/10/10 – Baseline

Vegetation Plot 2: 2/10/10 – Baseline

Vegetation Plot 3: 2/10/10 – Baseline

Vegetation Plot 4: 2/10/10 – Baseline

Vegetation Plot 5: 2/10/10 – Baseline

Vegetation Plot 6: 2/10/10 – Baseline

Vegetation Plot 7: 2/10/10 – Baseline

Vegetation Plot 8: 2/10/10 – Baseline

APPENDIX D

Stream Photos

Photo Point 1u: View looking upstream near Station 11+10. 2/23/10 – Baseline

Photo Point 1d: View looking downstream near Station 11+10. 2/23/10 – Baseline

Photo Point 2u: View looking upstream taken near Station 17+40. 2/23/10 - Baseline

Photo Point 2d: View looking downstream taken near Station 17+40. 2/23/10 – Baseline

Photo Point 3u: View looking upstream near Station 22+25. 2/23/10 – Baseline

Photo Point 3d: View looking downstream near Station 22+25. 2/23/10 – Baseline

Photo Point 4: View looking upstream near Station 24+00. 2/23/10 – Baseline

Photo Point 5: View looking downstream near Station 50+00. 2/23/10 – Baseline

Photo Point 6u: View looking upstream near Station 54+90. 2/23/10 – Baseline

Photo Point 6d: View looking downstream near Station 54+90. 2/23/10 – Baseline

Photo Point 7: View looking upstream tributary at confluence. 2/23/10 - Baseline

APPENDIX E

Current Condition Plan View

